Reconstructing Irregularly Sampled Laser Doppler Velocimetry Signals by Using Artificial Neural Networks
نویسندگان
چکیده
The analysis of turbulent flow signals irregularly sampled by a Laser Doppler velocimeter is assessed by means of ANNs. This technique has been proven to correctly predict the time evolution of turbulent signals. In this paper we are taking advantage of this ability to obtain models of unevenly sampled signals and thus be able to reconstruct and resample them at a regular pace in order to allow for their conventional
منابع مشابه
Damage detection and structural health monitoring of ST-37 plate using smart materials and signal processing by artificial neural networks
Structural health monitoring (SHM) systems operate online and test different materials using ultrasonic guided waves and piezoelectric smart materials. These systems are permanently installed on the structures and display information on the monitor screen. The user informs the engineers of the existing damage after observing signal loss which appears after damage is caused. In this paper health...
متن کاملDetermination of Blood Glucose Concentration by Using Wavelet Transform and Neural Networks
Background: Early and non-invasive determination of blood glucose level is of great importance. We aimed to present a new technique to accurately infer the blood glucose concentration in peripheral blood flow using non-invasive optical monitoring system. Methods: The data for the research were obtained from 900 individuals. Of them, 750 people had diabetes mellitus (DM). The system was ...
متن کاملDetecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks
Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigu...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملMultiwavelet neural network preprocessing of irregularly sampled data
Multiwavelets are briefly reviewed and preprocessing and postprocessing for such wavelets are introduced. Least squares curve fitting of irregularly sampled data is achieved by means of unshifted and shifted multiscaling functions. This preprocessing procedure combined with multiwavelet neural networks for data-adaptive curve fitting is shown to perform well in the case of high resolution. In t...
متن کامل